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Abstract

Both accuracy and efficiency are crucial for image cap-
tioning in real-world scenarios. Although Transformer-
based models have gained significant improved captioning
performance, their computational cost is very high. A fea-
sible way to reduce the time complexity is to exit the predic-
tion early in internal decoding layers without passing the
entire model. However, it is not straightforward to devise
early exiting into image captioning due to the following is-
sues. On one hand, the representation in shallow layers
lacks high-level semantic and sufficient cross-modal fusion
information for accurate prediction. On the other hand,
the exiting decisions made by internal classifiers are unreli-
able sometimes. To solve these issues, we propose DeeCap
framework for efficient image captioning, which dynami-
cally selects proper-sized decoding layers from a global
perspective to exit early. The key to successful early exiting
lies in the specially designed imitation learning mechanism,
which predicts the deep layer activation with shallow layer
features. By deliberately merging the imitation learning
into the whole image captioning architecture, the imitated
deep layer representation can mitigate the loss brought by
the missing of actual deep layers when early exiting is un-
dertaken, resulting in significant reduction in calculation
cost with small sacrifice of accuracy. Experiments on the
MS COCO and Flickr30k datasets demonstrate the DeeCap
can achieve competitive performances with 4× speed-up.
Code is available at: https://github.com/feizc/DeeCap.

1. Introduction
Image captioning aims to generate a textual description

for a given image. It requires not only to identify what vi-
sual objects the image contains but also to explain their re-
lationship [4]. Recently, encoder-decoder framework has
achieved great progress [2, 6, 8, 14, 22, 50, 55, 56, 60, 61],

*The corresponding author.
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Figure 1. Conceptual workflow of early exiting in image caption-
ing system, which adjusts the number of passed decoder layers,
allowing for reduction of computational costs yet facing a perfor-
mance bottleneck. Yellow circles are internal classification, and
red arrows denote tokens exiting early at different decoder layers.

which generates sentence through modeling the next word
conditioned on both the image and generated sub-sentence.
Moreover, Transformer architecture [48] is introduced to
implicitly relate semantic information through dot-product
attention and achieves state-of-the-art performances [10,28,
33,36,37,62]. Although these models achieve more promis-
ing results, the low inference speed hinders their application
to many real-time applications [20].

A growing number of studies emerged recently focus-
ing on improving its efficiency. Inspired by the paral-
lelism of Transformer [19], one straight forward strategy
is the non-autoregressive decoding [12, 58], which pre-
dicts the entire sentence in one shot. Numerous works
follow this line, e.g., iterative refinement [13, 16, 23], la-
tent variables [13], multi-agent optimization [20], and semi-



autoregressive [15, 57, 64]. Such model-level optimization
usually lacks dependencies among words and struggles to
produce descriptions with good quality. Another method
is proposed for instance-level speed-up, called early exit-
ing [17, 46, 54], which emits output with internal classifiers
when the predictions are confident enough. However, its
applicability to multimodal context is still largely under-
explored. In this paper, we focus on performing early ex-
iting for image captioning, as illustrated in Figure 1.

We first conduct probing experiments to investigate the
direct transfer of original early exiting [11, 54] in image
captioning, and find that the resulting poor performance
lies in: (i) The local shallow representations of caption de-
coder lack high-level semantic and cross-modal fusion in-
formation, it is insufficient to predict accurate tokens. As
Transformer-based structure exhibits a hierarchy of repre-
sentations, e.g., shallow layers extract low-level features
like syntactic information while deep layers capture se-
mantic fusion relations [10, 35], we believe that the high-
level information usage is usually required even for easy
instances. (ii) The internal classifiers in the early exiting
cannot provide reliable exiting decisions. In practice, we
design an evaluation metric, referred to as false confidence
score, to examine the ability and quality of image caption-
ing models to distinguish difficult contexts from easy ones.
We discover that the predictions of internal classifiers, i.e.,
confidence score, cannot truly reflect the difficulty at some-
times, resulting in wrongly generated results and thus hin-
dering the application of early exiting.

Following this premise, we investigate the design of dy-
namic early exiting method for image captioning and incor-
porates two key novelties with respect to all previous algo-
rithms: (i) similar to mesh connection [10], all the low-level
hidden states are connected for adequate historical informa-
tion, instead of only one hidden state. (ii) the high-level
representation in the uncomputed deep layers is estimated
with imitation learning-based [43] lightweight network that
only inputs the low-level features. The resulting prediction
is also employed for exiting prediction, which in return can
compromise the performance degradation brought by the
lack of high-level features. By combining both shallow and
imitated deep hidden representations, our DeeCap model ef-
ficiently generates high-quality sequences with early exit-
ing. Experiments on the MS COCO and Flickr30k bench-
marks demonstrate that the proposed dynamic early stop-
ping approach in image captioning can obtain a much bet-
ter description performance. More importantly, the trained
model can be adjusted in real-time without re-training from
scratch like previous methods [12, 16, 20]. Further analysis
also shows that incorporation of imitated deep layer repre-
sentation can calibrate the caption generation and proves the
effectiveness and generalizability.

Figure 2. Performance comparison for different models with the
same number of computation layers on the MS COCO dataset.
Complete image captioning model capable of extracting semantic
information clearly outperforms vanilla early exiting model which
overlooks the high-level representations.

2. Investigations on Early Exiting
Early exiting strategy accelerates the model inference by

stopping forward propagation based on the results of inter-
nal classifiers [44]. Specifically, if the internal classifier’s
prediction based on the current layer of hidden representa-
tion is confident enough, then the generation is terminated
without passing through the residual layers. However, in
image captioning, it is still remain unexplored that whether
the local hidden representations could provide sufficient in-
formation for word generation and whether the intermediate
classifiers are reliable for making exiting decision. Accord-
ingly, we try to in-depth analyze the working mechanism of
early exiting in the conventional image captioning model by
answering these two questions.

2.1. Are Shallow Representations Sufficient?

It is believed that the Transformer-based model learns a
hierarchy of visual and semantic representations [9,10]. We
highlight that high-level fusion features are essential even
for easy tokens generation, and the predictions only based
on shallow representations are prone to be inaccurate. To
examine it, we evaluate the performance of the outputs of
different decoder layers, as the representation containing
adequate information is necessary for decent task perfor-
mance. Specifically, we design the following Transformer-
based (TF) models:

• TF-EE, which is a baseline of early exiting methods.
The internal classifiers are appended after each caption
decoder layer in the vanilla Transformer image cap-
tioning model for exiting generation early.

• TF-kL, which only utilizes the fixed first k decoder



layers for sentence generation. A classifier is added
directly after the k-th layer. This model could be seen
as a static early exiting variant.

• TF-Complete, which is a standard Transformer-based
model with a classifier after the last decoder layer.
The representations of this classifier contain sufficient
high-level semantic and cross-modal fusion informa-
tion, which is complete than the above two models.

We report the evaluation results with a different num-
ber of caption decoder layers on the MS COCO dataset [7].
The performance for TF-EE is sentence-level averaged and
divided into bins. According to Figure 2, we can find that:
(i) The TF-EE performs poorly, especially when the genera-
tions are made based on shallow representation. It indicates
that the high-level semantic and cross-modal fusion infor-
mation is important for the image describing. (ii) TF-kL
outperforms TF-EE. We attribute it to that the latter sev-
eral layers can learn more task-specific and comprehensive
representation during optimizing. However, since the in-
ternal layer representation in TF-EE are restricted in the
whole model learning, this fine-tuning effect cannot be fully
exploited, resulting in a degrading performance in shal-
low layers. These findings verify the assumption that the
high-level representation are necessary, motivating us to ex-
ploit alternative deep information in the uncomputed layers.
What’s more, the poor results of TF-EE on the generated
tokens when it decides to stop early, also forces us further
analysis on the quality of exiting decisions.

2.2. Are Internal Classifiers Reliable?

We further analyze whether the early exiting decisions
made by internal classifiers in image captioning are reliable
by first introducing two concepts referring [29, 39]:

• Token Difficulty d(yi), which denotes whether a token
yi can be generated easily by a learned image caption-
ing model, under current context Ci including given
image x and previous generated sub-sentence y<i. We
define instances that model cannot generate correctly
as difficult tokens, i.e., d(yi) = 1, and those can be
mastered well as easy ones, i.e., d(yi) = 0.

• Prediction Confidence c(yi), which indicates how con-
fident and determinate the image captioning model is
about its prediction for a specific token yi under cur-
rent context Ci. Here, we utilize the corresponding
probability of yi in the output vocabulary distribution
as the prediction confidence score.

To utilize the prediction confidence as reference for dy-
namic early exiting decisions, a difficult token under the
current context should be predicted with less confidence
score than that of an easy one. However, there exists an

Figure 3. Heat map of evaluated FCS from different models on the
MS COCO dataset. FCS of internal classifiers in the TF-EE shal-
low layers is lower than that of TF-kL and TF-Complete, which
leads to more incorrect tokens being generated. The exiting deci-
sions of TF-EE are unreliable sometimes.

over-confident problem [5, 52] where the prediction con-
fidence is inconsistent with the token instance difficulty
sometimes. To measure the seriousness of consistency phe-
nomenon, we introduce the False Confidence Score (FCS).
In detail, we first define a false confidence function for the
token instance pair (yi, yj) to measure the inconsistency de-
gree between prediction confidence and token difficulty as:

FC(yi, yj) =

{
0 if d(yi) > d(yj) and c(yi) < c(yj)

1 otherwise
. (1)

We then sort the context-token pairs according to their con-
fidence scores in an ascending order, i.e., c(yi) < c(yj) for
any i < j. Finally, the dataset-level normalized sum of all
false confidence pair can be computed as:

FCS = 1− 1

Q

L∑
i=2

i−1∑
j=1

FC(yi, yj), (2)

where L is the total number of context-token instance pairs
in the evaluation dataset and Q is a normalizing factor cal-
culated as a half of L(L− 1) to restrict the FCS value from
0 to 1. Following the above definition, the FCS metric es-
timates the ratio of context-token pairs that are correctly
prioritized from the internal classifier. Intuitively, classi-
fiers with higher FCS achieve better consistency between
the prediction confidence and tokens difficulty, and making
more reliable exiting decisions. Therefore, the FCS can be
served as an effective approximate for evaluating the quality
of early exiting decisions.

Experimentally, we compute the FCS on the MS COCO
test set for different baselines discussed in the preceding
section, and the results are illustrated in Figure 3. We can
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Figure 4. Illustration of high-level deep feature modeling with
imitation learning. Early exiting at the m-th layer and the dashed
line denotes the uncomputed layers at inference stage.

see that: (i) The FCS of TF-EE model in shallow layers are
significantly lower than TF-kL and TF-Complete models.
This demonstrates that the exiting decisions in the shallow
layers of TF-EE are unreliable, and captioning performance
can be accordingly worse when most tokens are predicted
incorrectly in early layers. (ii) The capacity of determin-
ing the difficult contexts from easy ones is improved as the
number of decoder layer increases. An important reason is
that the deep representations holds sufficient semantic and
cross-modal information, and it is possible for classifiers
equipped with deep information to provide more effective
exiting decisions. Our analysis demonstrates that directly
transferring current early exiting method in image caption-
ing for different decoder layers are not reliable, which in-
spires us to explore the modeling of deep information and
sufficient representation fusion for more robust decisions.

3. Methodology
To remedy the drawbacks of directly executing the early

exiting method in image captioning, we improve this idea
from the perspective of making a comprehensive early-exit
decision, which combines the both shallow and approxi-
mated deep representations with a gate mechanism.

3.1. Deep Representations Imitation

Early exiting method aims to stop generation at a shallow
Transformer layer and ignore the deep representations cap-
tured in the deep layers. However, pilot analysis for image
captioning in section 2 highlights that even the prediction of
simple tokens relies on not only the surface low-level fea-
tures but also high-level semantic information. It is actually
infeasible to only consider low-level representations, which
motivates us to exploit the high-level information. How-
ever, directly using deep representation is intractable since

the deep states are inaccessible until feed forward the corre-
sponding layers, which is not what we want. To bridge this
gap, we introduce a method to approximate the uncomputed
hidden states in deep layers referring to imitation learn-
ing [3, 42]. That is, we equip each decoder layer with a
lightweight imitation network, which is encouraged to pre-
dict the representation of the real state of that layer based
on the computed low-level representation. Through a layer-
wise imitation process, we can get the deep hidden states
with minimum cost. The workflow of the deep representa-
tion imitation is shown in Figure 4.

Formally, we denote the output hidden state of the m-th
layer as hm. To get the k-th layer’s imitated deep repre-
sentation when the feed forward propagation is executed at
the m-th layer for any k > m, the k-th imitation network
equipped to the k-th layer inputs the truly hidden state hm

and outputs an approximation ĥm
k of the real deep represen-

tation hk as ĥm
k = MLPk(hm), where MLPk(·) is a sim-

ple Multi-Layer Perceptron (MLP) network. We argue that,
despite being limited in learning capacity, the MLP is suffi-
cient for estimating deep representations. Then learning tar-
get hk guides the k-th imitation network in a quick manner.
In between, we utilize the cosine similarity as prediction
performance measurement between the real deep represen-
tation hk and the generated representation ĥm

k as:

Cos-Sim(hk, ĥ
m
k ) = 1− ĥm

k · hk

∥ĥm
k ∥ · ∥hk∥

, (3)

where ∥·∥ denotes the L2 norm. Accordingly,
we can compute the sum of the similarity differ-
ence between predicted hidden representations as

1
N−m

∑N
k=m+1 Cos-Sim(hk, ĥ

m
k ) when the feed for-

ward propagation executes at the m-th layer. Considering
that the layer m can be any number between 2 and N , we
enumerate all possible layer numbers m, resulting in the
overall loss of imitation network as:

Limit =
1

N − 1

1

N −m

N∑
m=2

N∑
k=m+1

Cos-Sim(hk, ĥ
m
k ). (4)

The feed forward propagation is computed in all layers, and
all imitation networks are encouraged to generate represen-
tations close to the real deep representations. Note that we
pass through the entire N -layer image captioning model,
but we simulate the situation that the feed forward propaga-
tion ends up at the m-th layer for any m < N .

3.2. Multi-Level Representations Fusion

After obtaining the real low-level and imitated high-level
representation, we investigate how to aggregate all the hid-
den states into one, respectively. Formally, when the feed
forward propagation proceeds to the m-th layer, all the pre-
viously generated shallow hidden states is {h1, . . . , hm},



the subsequent imitation networks take the m-th real state
as input to generate the approximations of deep repre-
sentations from the (m+1)-th layer to the N -th layer as
{ĥm

m+1, . . . , ĥ
m
N}. Hence, the fusion of multi-level of shall

and deep representation can be computed as:

hshallow = g({h1, . . . , hm}), (5)

hdeep = g({ĥm
m+1, . . . , ĥ

m
N}), (6)

where g(·) refers to the feature fusion strategy.
For the fusion of a variable number of multi-level fea-

ture, we explore the following four strategies to aggregate
multi-level representations into one as:

• Average. The average strategy sums and averages all
hidden representations in different layers directly.

• Concatenation. All the hidden representations are
concatenated in the sequence dimension and then fed
into a linear transformation layer to obtain a final com-
pressed representation.

• Attention-pooling. The attention-pooling strategy uti-
lizes the weighted projection of all hidden represen-
tation as the integrated information. The attention
weights are computed with the last hidden representa-
tion as the query and hold certain robustness to noise.

• Sequential Network. All multi-level representations
are sequentially fed into a LSTM network, and the out-
put hidden state of the last time-step is regarded as the
fusion representation.

3.3. Gate Decision Mechanism

We finally explore how to merge the shallow and deep
hidden representation for early exiting decision. Intuitively,
the shallow representation hshallow and the deep represen-
tation hdeep are of different confidence since the truly gen-
erated low-level representations are more reliable than pre-
dicted deep representations. In addition, different token dif-
ficulty requires high-level representation differently. There-
fore, it is necessary to develop a decision mechanism to
combine the low-level and high-level representation dynam-
ically. In practice, we design a gate network to incorporate
the both representation into decision. When comes to the
i-th layer, we compute the fusion of different level repre-
sentation, and the merged inputting is a trade-off between
these two as:

α = σ(MLP([hshallow, hdeep])), (7)
zm = αhshallow + (1− α)hdeep, (8)

where zm represents the merged information for the input
of internal classifier and MLP is a multi-layer perceptron
network for the merging gate.

Under the DeeCap framework, each decoder layer can
produce imitated deep representations and a final merged
representation zm which is used for early exiting decision.
Then the entire model will be updated with the layer-wise
cross-entropy loss following the provided ground-truth to-
ken yi. The gate decision mechanism dynamically learns to
adjust the balance of low-level and high-level information
under the supervision signal from ground-truth tokens and
the corresponding loss can be formalized as:

pm = softmax(zm), (9)

Lce = −
N∑

m=1

∑
yi∈V

[yilog(pm(yi))]. (10)

The final training objective can be combined as:

L = λLce + (1− λ)Limit, (11)

where λ denotes a balancing factor to adjust the impact of
imitation networks and internal classifiers learning.

3.4. Training and Inference

We train the model according to the loss in Equation 11
with the following two-fold improvements: (1) The shal-
low decoder layers will be updated more frequently as they
receive more updating signals with the original layer-equal
objectives. Therefore, we heuristically re-weight the cross-
entropy loss of each decoder layer depending on its depth
m as: wm = m∑N

k=1 k
. (2) Directly updating all parameters

of image captioning model at each step may damage the
well-trained features learned in the preceding stage. There-
fore, we try to balance the requirements of maintaining pre-
vious learned parameters and adapting to new domain at
fine-tuning gradually. To be specific, the parameters of a
layer may be frozen with a probability p, and the probabil-
ity p linearly decreases from the first decoder layer to the
last decoder layer in a range of 1 to 0.

During inference, we model the prediction confidence e
of current token with the calculated entropy H of the output
distribution pm of the m-th layer as e(pm) = H(pm). The
inference stops once the confidence e(pm) is lower than a
predefined threshold τ . The hyper-parameter τ can be ad-
justed according to the required speed-up ratios. Note that if
the exiting condition is never reached, our model degrades
into the conventional case of inference that the complete
computation in decoding layers is executed.

4. Experiments
4.1. Experimental Preparation

Dataset. MS COCO [7] and Flickr30k [40] image cap-
tioning datasets are used for evaluation. They contain
123,287 images and 31,783 images, respectively. There are



Models BLEU-1 BLEU-4 METEOR ROUGE CIDEr SPICE SpeedUp
Autoregressive Image Captioning models
NIC-v2 [50] - 32.1 25.7 - 99.8 - -
Up-Down [2] 79.8 36.3 27.7 56.9 120.1 21.4 -
AoANet [22] 80.2 38.9 29.2 58.8 129.8 22.4 -
M2-T [10] 80.8 39.1 29.2 58.6 131.2 22.6 -
TF-Complete 80.2 38.8 29.0 58.3 129.5 22.7 1.00×
Non-Autoregressive Image Captioning models
MNIC [16] 75.4 30.9 27.5 55.6 108.1 21.0 2.80×
FNIC [12] - 36.2 27.1 55.3 115.7 20.2 8.15×
MIR [23] - 32.5 27.2 55.4 109.5 20.6 1.56×
CMAL [20] 80.3 37.3 28.1 58.0 124.0 21.8 13.90×
IBM [13] 77.2 36.6 27.8 56.2 113.2 20.9 3.06×
SAIC [57] 80.3 38.4 29.0 58.1 127.1 21.9 3.42×
Early Exiting-based Image Captioning models
TF-EE 79.8 37.2 28.2 57.7 126.3 21.8 4.54×
DeeCap 80.1 38.7 29.1 58.1 129.0 22.5 4.35×

Table 1. Performance comparison of different captioning models using different evaluation metrics on the MS COCO Karpathy test set.
All values except SpeedUp are reported as a percentage (%).

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr
Models c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40
Up-Down∗ [2] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
AoANet∗ [22] 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
M2-T∗ [10] 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1
CMAL [20] 79.8 94.3 63.8 87.2 48.8 77.2 36.8 66.1 27.9 36.4 57.6 72.0 119.3 121.2
DeeCap 80.5 95.1 65.2 89.1 50.3 80.0 38.1 69.5 28.0 37.0 58.4 73.5 121.4 124.4

Table 2. Leaderboard of different image captioning models on the online MS COCO test server. ∗ denotes the ensemble model.

5 human-annotated descriptions per image. To be consistent
with previous works [10,22], we convert all the descriptions
to lower case and omit words which occur less than 5 times.
Image features are pre-extracted following [2].

Evaluation Metrics. For performance evaluation, five
metrics are utilized: BLEU@N [38], METEOR [26],
ROUGE-L [32], CIDEr-D [49], SPICE [1]. For efficiency
estimation, as the measurement of runtime might not be sta-
ble [54], we manually adjust the exiting threshold τ and
calculate the speed-up ratio by comparing the actually exe-
cuted layers in forward propagation with the complete lay-
ers. For an N -layer model, the SpeedUp ratio is calculated
as:

∑N
m=1 N×wm∑N
m=1 m×wm , where wm is the number of words that

exit at the m-th layer of caption decoder.

Implementation Details. The proposed DeeCap model
closely follows the same network architecture and hyper-
parameters settings as Transformer basic model [48].
Specifically, the number of stacked blocks for the visual en-
coder is 6, and for caption decoder is 6, hidden size is 512,

and feed-forward network size is 2048. We train the model
for 25 epochs with an initial learning rate of 3e-5, and it de-
cays by 0.9 every five epochs [41]. Adam [25] optimizer is
employed. We perform a grid search for frozen layer num-
ber during fine-tuning over {0, 1, 2, 3}. We find that small
models need more time to converge. The best model is se-
lected based on the validation performance. The decoding
time is measured on a single NVIDIA GeForce GTX 1080
Ti as prior works reported [13,20]. All speeds are measured
by running three times and reporting the average value.

4.2. Overall Results

Comparison with State-of-the-Arts. For a fair com-
parison, we adopt the Karpathy split [24] for the MS
COCO dataset, for which ground-truth annotations are
not publicly available. The performance comparison with
vanilla early exiting methods and other top-performing non-
autoregressive accelerating models in MS COCO offline
test set is presented in Table 1. In addition, the evalua-
tion results for Flickr30k are provided in the appendix. We
can find that early exiting-based methods can achieve more
than 4x acceleration. In terms of performance, DeeCap



Figure 5. Performance and efficiency trade-off line for early
exiting models. Our method outperforms original early exiting
method by a large margin especially with high speed-up ratio.

outperforms all the fast baselines, especially in BLEU@4
and CIDEr. Even compared with the basic autoregressive
baselines without considering the acceleration, it has com-
petitive performances. This phenomenon demonstrates that
DeeCap can break the performance bottleneck with a high
speed-up ratio by utilizing early exiting and comprehensive
representations from both high-level and low-level informa-
tion. Moreover, DeeCap outperforms TF-EE in all perfor-
mance metrics, validating the effectiveness of our proposal.
We also report the performance of our DeeCap on the on-
line MS COCO test server. Results are reported in Table 2.
It can be seen that, compared with the ensemble model, our
approach has little performance loss when accelerating gen-
eration and achieves an advancement of 2.1 CIDEr points
with respect to the best accelerating performer CMAL [20].

Performance and Efficiency Trade-off. To verify the ro-
bustness and efficiency of our proposed DeeCap, we visual-
ize the performance and efficiency trade-off curves in Fig-
ure 5 on the MS COCO test set. The competitive baseline
is the original early exiting method TF-EE. As can be seen,
the performance of early exiting model drops dramatically
when the speed-up ratio increases. This reflects the short-
comings of TF-EE, unstable performance can not meet the
needs of real-time applications, while our DeeCap demon-
strates more tolerance of speed-up ratio. At the same speed-
up ratio, the performance loss of DeeCap is less than one-
third compared with TF-EE, indicating that early exiting
with multi-level feature fusion is effective. In addition, the
model adjusts the speed-up ratio on this curve without re-
training, which is suitable for engineering applications.

4.3. Model Analysis

Effects of Deep Information Imitation. To assess
whether and how imitated deep representation from deep
layers contributes to the current word decision, we first eval-
uate the performance changes of our DeeCap method on the

Methods FCS (↑) B-4 C
DeeCap (× 2) 80.12 38.9 129.5
-w/o Deep Info. 78.67 38.5 128.3
DeeCap (× 4) 82.40 38.7 129.0
-w/o Deep Info. 79.55 38.2 127.8

Table 3. Effect of the incorporation of approximated deep repre-
sentation under various speed-up ratios.

Methods B-4 M R C S
Average 38.3 28.8 57.7 127.3 21.9
Concatenation 38.7 29.1 58.1 129.0 22.5
Attention-Pooling 38.6 29.0 57.9 128.7 22.3
SeqNN 38.5 29.0 58.0 129.0 22.3

Table 4. Performance comparison of different fusion strategies for
multi-level hidden representations.

MS COCO offline test set. The results shown in Table 3
demonstrate the impact of deep information incorporation.
We can observe that the global fusion mechanism brings
improvement on most metrics for both 2× speed-up ratio
and 4× speed-up ratio, which confirms that the approxima-
tions of deep representations help enhance the model abil-
ity in prediction. Beyond that, the deep representation can
be especially advantageous for the models with a higher
speed-up ratio. Recall that approximations of deep repre-
sentation complement the high-level information, and the
exiting at shallow layers loses more semantic representa-
tion compared with the exiting at deep layers. Therefore,
the benefit of deep information is more significant for the
exiting at shallow layers, which is validated by the larger
improvement gap with a 4× speed-up ratio.

Effects of Representation Fusion Strategies. The re-
sults of different shallow representation incorporation
strategies on the MS COCO offline test set are shown
in Table 4. The naive average strategies perform poorly,
which reflects that focusing on local strategy does not per-
form well. On the contrary, three simple yet effective
global strategies designed to combine all of the past hid-
den states bring significant improvement compared to base-
lines. Within them, we empirically find that the concatena-
tion strategy works best from an overall point of view. We
assume that such a strategy allows interaction among differ-
ent states, yielding a better captioning performance.

4.4. Case Study

For more intuitive understanding, we present several ex-
amples of generated image captions from vanilla early ex-
iting (TF-EE) and the proposed DeeCap models, which
hold the same model architecture, coupled with human-



Figure 6. Case studies of original early exiting (TF-EE) and the
proposed DeeCap model, coupled with the corresponding ground-
truth sentences (GT) for image caption generation.

annotated ground-truth sentences (GT) in Figure 6. As
we can be seen, in general, both models hold the capabil-
ity to reflect the content of the image accurately. Mean-
time, some semantic problems, including repeated words
and incomplete content, is severe in the sentence generated
by pure early exiting, while it can be effectively alleviated
by DeeCap, i.e., two “in” terms in the second sample with
nothing behind. This confirms our approach can guide the
model to reduce word prediction errors effectively.

4.5. Human Evaluation

Following previous works [22,60], we also conduct a hu-
man evaluation test to compare DeeCap model against the
original early exiting method. To be specific, we randomly
selected 300 samples from the MS COCO testing set and re-
cruited eight workers to evaluate model performances. Each
time, we show only one sentence paired with a correspond-
ing image generated by different models or human annota-
tion and ask: can you determine whether the given sentence
has been generated by a system or a person? We then calcu-
late the captions that pass the Turing test. The results of Hu-
man, DeeCap, and original early exiting are 91.7%, 82.0%,
and 61.3%, separately. It demonstrates the superiority of
DeeCap fused with high-level and low-level information in
providing human-like captions.

5. Related Works
Efficient Image Captioning. Current image caption-
ing systems mainly follow an autoregressive manner [4],
meaning that the model generates captions word by word
and is not suitable for parallel execution. Several recent

works attempt to accelerate generation by using a non-
autoregressive framework [19, 51], which produces the en-
tire sentences simultaneously. Fei et al. [12] reorders words
detected in the image to form better latent variables before
decoding. Cho et al. [23] and Gao et al. [16] introduce
an iterative mask refinement strategy to learn the position
matching information. Lu et al. [20] addresses the incon-
sistency problem with a multi-agent learning paradigm. The
biggest difference lies that our DeeCap adopts sample-level
speed-up acceleration for inference via adapting the compu-
tation according to the sample complexity while all previous
methods focus on model structure adjustment.
Early Exiting Strategy. A representative acceleration
framework for sample difficulty [18] is early exiting [54].
Prior works have mainly been used for image classification.
Deeply-supervised nets [27] and BranchyNet [47] propose
architectures that are composed of a cascade of intermedi-
ate classifiers. This allows simpler examples to exit early
via an intermediate classifier while more difficult samples
proceed deeper in the network for more accurate predic-
tions. Multi-scale dense networks [21] and adaptive res-
olution networks [59] focus on spatial redundancy of input
samples and use a multi-scale dense connection architecture
for stopping. Early exiting has also been verified in natu-
ral language understanding [31, 34, 44, 63], sequence label-
ing [30], text classification [29], question answering [45],
and document ranking [53]. Following these, we study an
working mechanism of early exiting in image captioning,
and try to deal with the performance bottleneck with multi-
level representation fusion.

6. Conclusion

In this paper, we point out that applying vanilla early
exiting strategy in image captioning faces the performance
bottleneck, due to insufficient cross-modal representations
and poor decisions of the internal classifiers. To alleviate
this problem, We propose a dynamic early exiting method
for efficient image captioning from a multi-level perspec-
tive. Unlike previous works only utilizing local hidden rep-
resentation, DeeCap model employs a novel approach to ap-
proximate and engage the multi-level representation from
different layers, which are originally inaccessible for pre-
diction. Experiments illustrate that our approach achieves
significant improvement over the original early stopping
baseline with a high speed-up ratio, suggesting the supe-
riority in application prospects.
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